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A B S T R A C T

This study extends a neoclassical growth model to include the accumulation of physical capital and energy
consumption within a panel of fifty states (plus the District of Columbia) in the U.S. The theoretical model
allows us to examine the implications for convergence in economic growth and energy intensity. From the
theoretical model, we formulate an empirical approach using a dynamic panel model that is estimated using
a general method of moments framework to test the conditional rates of convergence. The empirical results
indicate convergence in energy intensity, and our estimates accurately predict both the growth in and con-
vergence of energy intensity across our entire sample. Consistent with other findings in the literature, our
results imply that energy use, over the past four decades, plays a small and positive role in state-level,
per capita economic growth and convergence. Based on these results, we discuss policy implications for
state-level income growth and energy consumption.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The economic literature is replete with studies that have explored
the relationship between energy consumption and economic growth,
and after four decades of empirical research there is still no consen-
sus on the causal link between energy consumption and real income
(Payne, 2010; Ozturk, 2010). The relationship between energy and
growth gained the attention of scholars, and the public alike, after the
two global oil crises in the 1970s. Interest in the topic re-emerged in
the 2000s in conjunction with the run-up in oil prices, which peaked
at nearly $150 per barrel in 2008 (compared to an average global
price of $25 per barrel in the 1990s) (Energy Information Adminis-
tration, 2016). The fundamental problem within the literature is in
identifying a causal link, if any exists, between energy and growth.

Two recent studies, offered by Csereklyei and Stern (2015) and
Rühl et al. (2012), observe that global energy consumption has been
on the rise for the past few decades, but energy intensity is declining
for developed countries such as the U.S. and the U.K. These obser-
vations motivated Csereklyei and Stern (2015) to question whether
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economic growth has less of an effect on the growth in energy use in
richer countries, which they describe as a “decoupling of energy and
growth.” The authors test a weak and strong version of the decou-
pling hypothesis. The strong hypothesis is that economic growth has
less of an effect on energy use as income grows through time; while
the weak hypothesis is that energy use is declining in developed
countries through time. Similar to Csereklyei and Stern (2015), we
find strong evidence of convergence in energy intensity and weak
decoupling, but no evidence of strong decoupling.

In this paper, we derive a theoretical model strongly grounded
in macroeconomic growth theory. In our case, however, we treat
energy resources as an input (factor of production) into an economy’s
income formation through time. Thus, our extension of the model
allows for a closer examination of the energy-growth relationship
and constructs its empirical counterpart using disaggregated U.S.
state-level data between 1970 and 2013.3 Specifically, our frame-
work offers two testable hypotheses regarding the energy-growth

3 For the sake clarity, our exposition regarding the energy-growth relationship
does not explicitly relate economic “growth” to energy consumption, but rather the
effect of energy consumption on the level of state-level income. However, our derived
convergence model specifications have direct implications for the economic growth
path through time, so we will use the term “growth,” in a general sense, throughout
the remainder of the manuscript.
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relationship that closely mirror Csereklyei and Stern’s (2015) def-
initions of strong and weak decoupling. The first hypothesis differs
slightly from the strong decoupling definition as we do not directly
test the effect of economic growth on energy. Instead, we test
whether energy is a determinant of economic growth. Our sec-
ond hypothesis tests the co-evolution of an economy’s growth and
energy intensity through time, where energy intensity is defined as
consumption per unit of gross domestic product (GDP).

The two concepts are interrelated in that if the first hypothe-
sis (energy is necessary for economic growth) is rejected, but an
examination of the second hypothesis (the convergence of energy
intensity) results in a failure of rejection, then it would suggest
that energy resources need not be a constraint for future economic
growth. In other words, energy resource consumption would not
necessarily constitute a constraint because the economy is consum-
ing its energy resources more efficiently — as evidenced by the
economy’s decreasing trends in energy intensity through time. Fig. 1
demonstrates the trends in energy intensity among U.S. states over
the past four decades. For ease of exposition, we have averaged the
state-level intensities across Census regions. The figure clearly sug-
gests convergence in intensity across states, as demonstrated by the
clustering in the series near the last periods of observation.

In order to empirically test our two hypotheses regarding the
energy-growth relationship, we estimate the models using a two-
step system GMM framework on U.S. state-level data from 1970–
2013. Our examination of disaggregate national data is consistent
with the insights of Barro and Sala-i-Martin (1991), who posited that
convergence in income is more likely to occur among regions within a
country than across different countries. Figs. 2 and 3 further illustrate
the point that within the U.S., states are converging (exemplified by
the negative slope of the trend line within each graph) in terms of
per capita income and per capita energy expenditures.

We offer three unique contributions to the energy-growth liter-
ature. One, we offer a simple extension of the Solow growth model,
based on seminal past works within the growth literature (Solow,
1956; Mankiw et al., 1992; Islam, 1995; Caselli et al., 1996; Bond et
al., 2001), that includes energy resources as a factor of production
(Stern, 1993, 2000; Stern and Kander, 2012). Based on the extended
model, our second contribution consists of deriving the theoretical
rate of convergence and then developing an empirical estimation
model based directly on the derivation. Third, we estimate the
empirical model using a GMM approach, which is consistent and
asymptotically efficient.

This study differs from related research, such as Stern and Kander
(2012), who develop a theoretical model to analyze the relation-
ship between energy and economic growth and test the model’s
hypotheses using empirical specifications that correspond to the
theoretical model. In contrast, our main focus is to examine the
implications of economic and energy growth convergence within a
set of advanced economies. We find strong evidence that state-level
energy intensities are converging and energy consumption plays
a significant role in explaining the energy-intensity convergence
process. At the same time, we find that energy consumption plays
a small (positive) and significant role in economic growth and
convergence, which is similar to the results of Csereklyei and Stern
(2015), who did not find of evidence of the aforementioned strong
decoupling hypothesis.

The current study is organized as follows. In the next section we
establish the theoretical growth model, which is extended to include
energy resources as a factor of production in state-level income, and
we motivate the empirical specification that directly corresponds to
the theoretical model. In section three we describe the data, and in
section four we briefly develop the GMM framework used to empir-
ically verify the predictions of the theoretical model. In section five
and six we discuss the empirical findings and the potential policy
implications.

2. Adding energy resource accumulation
to the Solow growth model

2.1. Adding energy resource accumulation to the Solow model

As outlined in Mankiw et al. (1992), the Solow growth model can
easily be extended to three factors:

Y(t) = K(t)a • E(t)b • (A(t) • L(t))1−a−b 0 < a,b < 1, (2.1)

where where Y denotes output, K is physical capital, L is labor, A
is a labor-augmenting level of technology, and E denotes energy
resources (both non-renewable and renewable energy). (For the
readers not familiar with the Solow growth model, we have pro-
vided a brief outline of the model and underlying assumptions in
the Appendix.) The same assumptions for the production function
specified within the original Solow (1956) model, provided in the
Appendix, hold here.

Fig. 1. U.S. Regional Energy Intensity (Energy use per unit of GDP), 1970–2013.
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Fig. 2. Convergence of per capita income across U.S. states: 1970 per capita income and 1970–2013 income growth rate.

Upon examining the specified production function above, the
reader may wonder why we have not added an energy- or capital-
augmenting technology term, especially given the tremendous tech-
nological progress in U.S. energy production for the past several
decades. Unfortunately, the specification of labor-augmenting tech-
nology is an artifact of this particular model — see Barro and
Sala-i-Martin (2004, p.78–80) for the formal proof. In other words,
the model must be specified with a labor-augmenting technol-
ogy in order to have a steady state (with constant or exogenous
growth rates). However, we will generalize this somewhat lim-
iting assumption by expressing a variable for technology on the

right-hand side of the empirical model (the regression model) —
looking ahead, we assume that the variable for technology, similar
to Islam (1995), is subsumed into the fixed effect variable within the
panel data model.

Eq. (2.1) can be re-expressed in intensive form as y(t) =
k(t)a • e(t)b, where y(t) denotes output per effective unit of labor,
k(t) denotes capital per effective unit of labor, and e(t) denotes the
level of energy resources per effective unit of labor — this definition
is loosely analogous to the level of per-capita energy consumption
within the economy. To solve for capital and energy, we must spec-
ify three equations (the production function and two equations of
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Fig. 3. Convergence of per capita energy expenditures across U.S. states: 1970 energy expenditures and 1970–2013 energy expenditure growth rate.
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motion). Hence, in addition to the production function, there are two
equations of motion for capital and energy:

˙k(t) = sk • k(t)a • e(t)b − (n + g + d) • k(t), (2.2)

˙e(t) = se • k(t)a • e(t)b − (n + g + d) • e(t). (2.3)

The equations of motion assume that a constant fraction of
income, sk, is saved for the accumulation of physical capital and a
constant fraction of income, se, is saved for the consumption of future
energy resources. Additionally, we assume that sk is independent of
se and vice versa. A list, of all of the study’s variables and parameters,
is provided in Table 1.

Eqs. (2.2) and (2.3) imply that capital and energy converge to a
steady state defined by

k∗ =

(
s1−b

k
• sbe

n + g + d

)1/(1−a−b)

(2.4)

e∗ =

(
sak • s1−a

e

n + g + d

)1/(1−a−b)

. (2.5)

The steady state equations above are only stable provided that
a + b < 1, and if a + b = 1, then the steady states are arguably
undefinable. By substituting Eqs. (2.4) and (2.5) into the production
function and transforming the variables to natural logs, then we can
derive the following equation for income per capita:

ln
[

Y(t)
L(t)

]
= ln A (0) + g • t −

(
a + b

1 − a − b

)
ln(n + g + d) (2.6)

+
(

a

1 − a − b

)
ln(sk) +

(
b

1 − a − b

)
ln(se).

Table 1
Nomenclature.

Variable Description
or Parameter

Y(t) Income or output
A(t) Labor-augmenting level of technology
L(t) Labor force
K(t) Physical capital stock
E(t) Energy resources
ẋ Derivative of variable x with respect to time, or ẋ = dx/dt
I(t) Capital investment
n Exogenous growth rate of work age-related population
g Exogenous growth rate of labor-augmenting technology
d Exogenous depreciation rate of physical capital
y(t) Output per effective unit of labor
k(t) Physical capital per effective unit of labor
e(t) Energy resources per effective unit of labor
a Parameter representing the factor share (output elasticity)

of capital in the production of output
b Parameter representing the factor share (output elasticity)

of energy in the production of output
s Exogenous savings rate of current income (for future capital

investment)
si Exogenous savings rate of current income (for future capital

investment
if i = k and energy resources if i = e)

k The convergence rate
t Predetermined time-interval between years of observation
l i State-level fixed effect for state i
gt Time fixed effect for year t
c Estimated rate of convergence
k̂ Implied rate of convergence, based upon estimated rate of

convergence

Eq. (2.6) implies that income per capita is decreasing with pop-
ulation growth, and per-capita income is increasing with techno-
logical growth and the accumulation of physical capital and energy
resources. The parameters a and b denote the factor shares of capital
and energy, respectively. Historically, parameter estimates of a have
been approximately equal to one third (Mankiw et al., 1992; Islam,
1995; Barro and Sala-i-Martin, 2004).

Eq. (2.6) makes a prediction about a empirical analysis of per-
capita income. Specifically, if the accumulation of energy resources
are omitted from a regression of per-capita income, then the fourth
term on the right-hand side of Eq. (2.6) would be subsumed into
an error term, and if significant, would result in biased coefficient
estimates on population growth and the accumulation of physical
capital (the direction of bias depends on whether the accumula-
tion of energy resources are positively or negatively correlated with
population growth and the accumulation of physical capital). For
example, let’s assume (for the sake of argument) that a = 1/3 and
b = 1/4. These values would imply that the coefficient estimates on
a model of per-capita income growth excluding the accumulation of
energy resources, provided in Eq. (A.8) of the Appendix, would equal
approximately 0.5, whereas the coefficient estimates in Eq. (2.6)
would equal approximately 1.4 for population growth and 0.8 for the
accumulation of physical capital. Therefore, if energy resources are
omitted from a regression, then population growth and (the accumu-
lation of) physical capital would arguably underpredict (in absolute
terms) per-capita income.

If one converts Eq. (2.5) into natural logs and substitutes this into
Eq. (2.6), then the equation for income per capita can be rewritten as

ln
[

Y(t)
L(t)

]
= ln A(0) + g • t +

(
a

1 − a

)
ln(sk) +

(
b

1 − a

)
ln(e∗)

−
(

a

1 − a

)
ln(n + g + d), (2.7)

where this equation expresses per-capita income as a function of the
accumulation of physical capital, the population growth rate, and
the level of energy resource consumption, e∗. As before, this equation
implies that if the level of energy resources are omitted from a
regression on per-capita income, then it would result in biased coef-
ficients estimates for population growth and physical capital. Thus,
Eq. (2.7) will serve as the basis for the empirical analysis (and
hypotheses tests) conducted within this study.

Further, we can convert Eq. (2.7) into an expression of the energy
intensity of income by subtracting the term ln(e(t)) from both sides
of the equation, to yield:

ln
[

Y(t)
E(t)

]
=

(
a

1 − a

)
ln(sk) +

(
b

1 − a

)
ln(e∗) − ln(e(t))

−
(

a

1 − a

)
ln(n + g + d), (2.8)

where the energy intensity of income is defined as the ratio of out-
put to energy consumption (Galli, 1998; Metcalfe, 2008). Technically,
the term on the left-hand side of Eq. (2.8) is the inverse of how
the “energy intensity” of income is typically measured in the liter-
ature. However, it is a trivial task to convert the equation to the
ratio of energy consumption to output; i.e., multiply both sides of Eq.
(2.8) by negative one and add the term ln(e(t)) to both sides of the
equation.

We now turn briefly to the concept of “convergence” within the
Solow growth model.

2.2. Convergence

Solow’s (1956) model predicts that countries or states reach
different steady state levels based on either the state’s savings
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rate, its accumulation of physical capital, or the population growth
rate. Solow’s model does not necessarily predict convergence across
states, but rather it predicts that a state’s per-capita income will
converge to its own steady-state level. Hence, the model only pre-
dicts convergence across states after controlling for the determi-
nants of the steady state — this is often referred to as “conditional
convergence” (Mankiw et al., 1992).

Additionally, Solow’s model makes predictions about the speed of
convergence, which is given by

d ln(y(t))
dt

= −k • [ln(y(t)) − ln(y∗)] , (2.9)

where k ≡ (1 − a − b) • (n + g + d), and y∗ denotes the steady state
level of per capita income. We derived the expression for the speed of
convergence by using Eq. (2.6) and log-linearizing around the steady
state level of per capita income. (Specifically, we take a first-order
Taylor series approximation of the equation of per-capita income
around the steady state level of per-capita income. A proof for this
derivation is provided for the interested reader in the Appendix.)

If a = 1/3, b = 1/4, and (n+g+d) = 0.05, then the equation for
the rate of convergence, k, would approximately equal 0.02 — which
implies that an economy moves half way to its (per-capita income)
steady state in 35 years. Historically, most empirical studies of cross-
sectional convergence find an approximate rate of convergence of 2%
(Barro and Sala-i-Martin, 2004); however, panel-data studies often
estimate slightly higher rates of convergence (Islam, 1995; Caselli et
al., 1996).

Our augmented Solow growth model, expressed in terms of the
energy intensity of income (heretofore, “energy-intense income”),
also makes predictions about the speed of convergence given by

d ln(y/e)
dt

= −ke •

[
ln(y/e) − ln

∗
(y/e)

]
, (2.10)

where ke ≡ (2 −a −b) • (n + g + d), and
∗

y/e denotes the steady state
of energy-intensity income. The proof for Eq. (2.10) is nearly identi-
cal to the proof provided in the Appendix. (For the sake of brevity, we
do not provide a proof for the derivation of the energy-intense speed
of convergence; however, the authors are happy to provide the proof
upon request). The only slight difference is that we assume that the
equations of motion for both capital and energy resources are aug-
mented so that the output production function is expressed in the
form of energy-intense output, Y/E ≡ y/e. That is, we assume the
following

˙k(t) = sk •
y(t)
e(t)

− (n + g + d) • k(t),

˙e(t) = se •
y(t)
e(t)

− (n + g + d) • e(t).

With the above specifications, it is assumed that the investment
of capital and energy resources is determined by the product of
the exogenous savings rate (for capital and energy separately) and
the energy—intense level of income, rather than the product of the
savings rate and the level of per-capita income in Eq. (A.4).

As above, if we use the same assumed values for the factor shares
(a = 1/3, b = 1/4, and (n + g + d) = 0.05), then the conver-
gence rate of energy-intense income, ke, is approximately equal to
0.07. This implies that the economy moves half way to its (energy-
intense income) steady state in 10 years. The reason for the higher
implied rate of convergence (in absolute terms) is because the invest-
ment level of capital and energy is larger when income is expressed
in energy intense form. In other words, if capital investment is equal

to three billion dollars and output (or income) is equal to ten billion
dollars then the savings rate of capital, sk = Ik/Y, would approxi-
mately equal 30%. On the other hand, if capital investment is equal
to three billion, output is equal to ten billion, and energy expen-
ditures are equal to two billion, then the savings rate of capital
(in energy-intense form), sk = Ik/(Y/E), would approximately equal
60%.

Although the difference between the convergence rates in per-
capita income form versus energy-intense income form seems trivial,
the assumptive forms lead to large differences in the theoretical
speed of convergence. Therefore, estimates of the implied speed
of convergence (based on the empirical analysis), in both assump-
tive forms of income, provide a relatively simple robustness check
against the assumption of the exogenously determined savings
rates.

2.3. Converting the theoretical speeds of convergence into estimable
equations

Eq. (2.9) implies the following:

ln(y(t)) − ln(y(0)) =(1 − exp{−k • t}) ln(y∗) − (1 − exp{−k • t}) ln(y(0)) (2.11)

=(1 − exp{−k • t})(ln(y∗) − ln(y(0))).

The above equation is sometimes referred to as a partial adjust-
ment model — it suggests that the optimal value of the dependent
variable is determined by the explanatory variables of the initial
period, y(0). Moreover, we can generalize the above equation into a
partial adjustment model between two intervening periods of time
as

ln(y(t2)) − ln(y(t1)) = (1 − exp{−k • t})(ln(y∗) − ln(y(t1))), (2.12)

where t = (t2 − t1) (Islam, 1995). Next, we can substitute Eq. (2.7) in
for the ln(y∗) term in Eq. (2.12) to derive

ln(y(t2)) − ln(y(t1)) =(1 − exp{−k • t}) • ln(A(0))

+ g • (t2 − exp{−k • t} • t1)

+ (1 − exp{−k • t}) •

(
a

1 − a

)
ln(sk)

+ (1 − exp{−k • t}) •

(
b

1 − a

)
ln(e∗)

− (1 − exp{−k • t}) •

(
a

1 − a

)
ln(n + g + d)

− (1 − exp{−k • t}) • ln(y(t1)). (2.13)

As in Islam (1995), we can re-express Eq. (2.13) as a dynamic
panel data model with the term (1 − exp{−k • t}) • ln(A(0)) treated as
the time-invariant individual state-level fixed effect. This treatment
implies that the embedded technological growth process, ln(A(0)), is
unique to each state, but is approximately fixed over the period of
observation. Given this assumption, we can express Eq. (2.13) using
conventional notation for a dynamic panel data model as

yit = c • yi,t−1 +
3∑

j=1

bj • xj
it + gt + li + vit , (2.14)

where vit ∼ N(0,sv) is a transitory error term that varies across
states and time periods. Similar to Islam (1995), we define each the
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variables (i.e., the correspondence between Eqs. (2.13) and (2.14)) as
follows:

yit = ln(Y(t2)/L(t2)),

yi,t−1 = ln(Y(t1)/L(t1)),

c = exp{−k • t},
b1 = (1 − exp{−k • t}) • a

1−a ,

b2 = (1 − exp{−k • t}) • b
1−a ,

b3 = −(1 − exp{−k • t}) • a
1−a ,

x1
it = ln(sk),

x2
it = ln(e∗)

x3
it = ln(n + g + d),

li = (1 − exp{−k • t}) • ln(A(0)),

gt = g(t2 − exp{−k • t} • t1).

Note that Eq. (2.13) (and the corresponding Eq. (2.14)) is based on
an approximation around the steady state; therefore, it is valid for
cross-sectional analysis (i.e., assuming y(t1) = y(0) and y(t2) = y(T))
as well as with shorter time intervals defined by the panel data spec-
ification. Following Islam (1995), we specify our empirical model
with non-overlapping five-year time intervals, which helps filter out
the effects of business cycles on physical capital accumulation, pop-
ulation growth, and energy resource consumption. In Mankiw et al.
(1992), it was assumed that sk and n were constants over the entire
period of observation — with our panel data specification, we treat
sk, n, and e as constant between each time interval. In other words,
the specification in Eq. (2.14) allows for convergence, after control-
ling for individual state-specific fixed effects, to occur over several
consecutive time intervals.

Moreover, the estimable Eq. (2.14) can be re-expressed in energy-
intense income form as follows:

yit

eit
= c •

yi,t−1

ei,t−1
+

3∑
j=1

bj • xj
it + gt + mit. (2.15)

The variables only differ by the following definitions:

eit = ln(e(t2)),

ei,t−1 = ln(e(t1)),

b2 = −(1 − exp{−k • t}) •

(
1 − a − b

1 − a

)
.

Otherwise, the rest of the variables are identical to those defined
in Eq. (2.14). It is worth noting that the fixed effect term drops out of
the specification in Eq. (2.15). This is due to the conversion into the
form of energy-intense income. To see this, note that the definition
of energy-intense income is Y/E. We can convert this definition
to the ratio of output-per-effective-worker to energy-per-effective-
worker by multiplying energy-intense income by (1/AL)/(1/AL),
which yields y/e. This conversion provides a convenient definition of
energy-intense income but it omits the (labor-augmenting) techno-
logical growth term from the right-hand side of the equation (as in
Eq. (2.14) above). Thus, technological growth itself is now embedded
in the very definition of energy-intense income, y/e.

Finally, based on the estimated rates of convergence, the implied
rate of convergence is calculated according to

−k̂ =
1
t

• ln(ĉ),

and the implied half-life, given the implied rate of convergence is
calculated according to

exp{−k • t} → ln(2)

k̂
.

The half-life of convergence is defined as the time it takes for
half of the initial gap (i.e., the gap between some initial level and its
steady state level) to be eliminated (Barro and Sala-i-Martin, 2004).

2.4. Potential problems with the estimating convergence with dynamic
panel data models

The three previous subsections laid out a relatively simple neo-
classical growth model and a theoretical rate of convergence, for both
per-capita income and energy-intense income. From the theoreti-
cal model, we developed estimable approaches (empirical models),
based on previous work by Mankiw et al. (1992) and Islam (1995),
to test the predictions of the theoretical model. Despite the straight-
forward method of translating the theory to estimable form, there
are two sources of inconsistency in the existing empirical work on
growth: correlated individual effects and endogenous explanatory
variables (Caselli et al., 1996).

For example, Islam (1995) identified that Mankiw et al.’s (1992)
estimates are potentially characterized by omitted variable bias
because they estimated the conditional rate of convergence in a
cross-sectional context and omitted potentially relevant country-
level heterogeneous effects (which in the context of Islam (1995)
is a measure of technological growth). Islam’s (1995) study miti-
gates this potential bias by estimating conditional convergence using
a dynamic panel data approach, which allows him to control for
country-level fixed effects and time fixed effects.

However, Islam’s (1995) estimable model also potentially suf-
fers from inconsistent estimates by assuming that the explanatory
variables are exogenous (i.e. the explanatory variables are not cor-
related with the error term). He, of course, recognizes this potential
limitation and carefully explains the “Minimum distance” estima-
tion approach in his study to control for potential endogeneity issues
(Islam, 1995, p.1167–1169). Despite the properties of the “Mini-
mum distance” estimator, the general method of moments (GMM)
has arguably become a widely accepted estimation framework in
the empirical, economic growth literature (Arellano and Bond, 1991;
Arellano and Bover, 1995; Caselli et al., 1996; Bond et al., 2001). As
such, we employ the system GMM estimator proposed by Arellano
and Bover (1995). This estimator addresses the potential biases that
arise from the correlation between country fixed effects, the lagged
dependent variable, and the endogeneity of the other explanatory
variables.

In the next two sections, we explain the data used within the
current study and then explore the empirical model and estimation
results.

3. Data

The (BEA) Bureau of Economic Analysis (2015a) provides data
on the state-level physical capital stock, where all observations are
reported as the net capital stock. This means the BEA reports the data
net of depreciation of the existing capital stock in preceding years.
Additionally, the BEA only provides the data at the national level,
broken down by industry and year (one-digit Standard Industrial
Classification (SIC) codes and/or the North American Industry Clas-
sification System (NAICS) codes). Given the lack of state-level data,
Garfalo and Yarmarik (2002) and Yarmarik (2013) develop a method
for estimating the state-by-state capital stock. In particular, their
methodology consists of weighting a state’s industry (income) con-
tribution relative to the national industry (income) contribution to
overall GDP. This weight is multiplied by the national industry-level
stock of capital to obtain an estimate of the state’s industry-level
stock of capital (which assumes that the state-level industry capital
stocks are roughly proportional to the state-level industry’s contri-
bution to the same industry’s total income at the national level).
Finally, the one-digit, state-specific, industry-level capital stocks are
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summed to derive an overall estimate of the state’s total (net) capi-
tal stock within a given year. The authors’ original methodology was
developed for industry SIC codes, but later Yarmarik (2013) extended
the methodology to account for industry NAICS codes. Fundamen-
tally, the code-system classification differs only slightly with how
they aggregate certain industries into one-digit industry categories;
otherwise, the sums should approximately be the same despite the
differences in code-system classification. Given that our period of
observation falls within both code-system classifications (used by
the BEA), we aggregate the state-level physical stock according to
SIC codes in the period of 1970 to 1997 and aggregate the state-
level physical stock according to NAICS codes in the period of 1998
to 2013.

To estimate the accumulation of physical capital, we follow the
methodology of Yarmarik (2013) and calculate the difference in the
net physical stock between subsequent years — which creates an
annual series of observations from 1970 to 2013. That is, Yarmarik
(2013) estimates the gross investment series from the series on
capital using the accumulation equation: iij(t) = kij(t) − (1 −
dij(t)) • kij(t − 1), where kij(t) denotes the present level of the capital
stock in industry i and state j. Likewise, he defines d as the depreci-
ation rate and kij(t − 1) as the capital stock in the preceding period,
using the same subscript notation.

The Bureau of Economic Analysis (2015b) also compiles data on
total state-level income (or output). Because the state-level income
is in terms of nominal dollars, we convert the reported income to
real dollars using the U.S. GDP deflator from the World Development
Indicators.

The Energy Information Administration (2015b) provides energy
resource data, from which we collect “total energy consumption”
by state for the years 1970 to 2013. Total energy consumption
contains a state’s total energy use, including both renewable and
non-renewable sources, net of electricity that has been transmitted
outside of a state’s border. The unit of measurement is reported in
billion British thermal units (BTUs), which is the amount of work
needed to raise the temperature of one pound of water by one degree
Fahrenheit. Reporting energy in BTUs provides consistency across
all the different measurements of energy resources, which are often
measured in separate units, such as barrels of oil, tons of coal, and
kilowatts of electricity.

We gather the degree day data from the National Oceanic and
Atmospheric Administration (2016). In particular, heating and cool-
ing degree days measure the difference between outdoor temper-
atures and a temperature that people generally find comfortable
indoors. Degree days help determine the influence of temperature
change on energy demand. According to Diaz and Quayle (1980), a
degree day is determined by comparing the daily average outdoor
temperature with a defined baseline temperature for indoor comfort.
The National Oceanic and Atmospheric Administration (NOAA) mea-
sures degree days as the comparative daily average against a baseline
temperature of 65◦ Fahrenheit. Following the literature, we define
degree days as the product of the difference in the daily average
temperature (from the baseline) and the number of days through-
out the year in which the average temperature deviates from the
baseline. For example, if the daily average temperature deviates (in
absolute terms) from the baseline by 15◦ Fahrenheit for 200 days out
of the year, then the state would record 3000 (15 • 200) degree days
in that particular year. NOAA aggregates the two metrics, heating and
cooling degree days, by measuring the daily average temperature in
absolute terms. We treat degree days as exogenous, which provides
a valid instrument to help control for the demand of energy (interior
heating or cooling services) within a particular state.

We compile data on the working age population from the
Census Bureau (2015), given that the Census provides data on his-
torical, age-related population estimates for the years 1970 to 2013.
Specifically, the Census reports state-level population data estimates,

by single year of age, for each year. We therefore sum the data, by
state and by year, for anyone in the population whose single year
of age ranged between 16 and 65 years old. After calculating the
annual work-related population by state and by year, we estimate
the growth rate of the population as the average difference in pop-
ulation between intervening years. Recall though that population
growth is augmented by technology growth and the depreciation
rate, which both Mankiw et al. (1992) and Islam (1995) assume to
grow at 5% per year, so we add 0.05 to the above annual growth rate
to derive (n + g + d).

As a robustness check to our derived growth model, we also
include a commonly explored explanatory variable within the eco-
nomic growth and convergence literature. That is, we add human
capital investment to the data-set (Mankiw et al., 1992; Barro, 2001).
As a proxy for human capital investment, we use the percentage
of the population, 25 years and older with a bachelor’s degree or
higher, which we simply label as educational attainment. We obtain
the educational attainment data from the Census Bureau (2016).
Because the Census Bureau only provides state-level educational
attainment data with every decennial (10-year) census, we interpo-
late the growth rate between each corresponding decennial census
year (i.e., each ten-year census period) using ‘intercensal interpo-
lation’ (Census Bureau, 2012). The Census uses the same technique
to estimate population levels between each 10-year census. Based
on the interpolation, we are able to estimate state-level educational
attainment for the years 1970–2013.

The summary statistics for each variable is included in Table 2.

4. Empirical specification and estimation

4.1. The time series implications of the panel or longitudinal data

Strongly persistent time series are often described as “non-
stationary”. Using time series data with strong persistence, such as
series displayed by a unit root process (processes that are integrated
of order one or I(1)), in a regression equation can lead to incor-
rect results including spurious regressions (that is, finding a spurious
relationship between two or more time series that have similar
increasing or decreasing trends) (Wooldridge, 2006). For example,
assume that the true data generating process for one of our time
series variables, defined as yt, is characterized as a unit root: yt =
q1 • yt−1 + et, where q1 = 1 and et is a noise term. Since the parame-
ter q1 is equal to one in this example, the current observation of yt is
highly dependent on previous realizations of the same variable yt−1.
In this case, the random noise term et is not stationary and regression
results, based on this series, can be highly misleading.

Im et al. (2003) derive a test for the presence of unit roots in
panels that combines information from the time series dimension
with that from the cross-section dimension, resulting in fewer time
observations needed for the test to have power. Their test also allows
the autoregressive parameter to be panel specific and is more pow-
erful than the individual augmented Dickey–Fuller tests (ADF) in

Table 2
Descriptive statistics for annual state-level observations, 1970–2013.

(1) (2) (3)

N Mean Standard deviation

Total energy consumption (Billion BTU) 2244 1.69e+06 1.85e+06
Fossil fuel energy consumption (Billion
BTU)

2244 1.46e+06 1.67e+06

Degree days 2244 6524.65 1797.25
Investment (%) 2244 14.92 12.35
Population (%) 2244 6.07 1.14
Educational attainment (%) 2244 20.51 6.74
Real GDP per capita 2244 36,538.97 16,360.82
Number of states plus Washington DC 51 51 51
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rejecting the null hypothesis that unit roots characterize every time
series under consideration. We therefore employ the Im–Pesaran–
Shin (IPS) test using the annual data series between 1970 and 2013,
where our null hypothesis is that each of the regressors follows a
unit-root process .

The starting point of the IPS test requires state-by-state ADF
regressions of the form

Dyit = ai + ditime + biyi,t−1 +
p∑

j=1

qijDyi,t−j + eit , (4.1)

where Dyit is the first difference of GDP per capita (or the variable of
interest for the unit root test), the ai includes the state-specific inter-
cept, time is the time trend, and p is the specified lag length included
to mitigate the problem of serial correlation. The number of lags for
each state is determined by minimizing the Akaike Information Cri-
teria, subject to the maximum of eight lags. Because U.S. states have
many similarities, our results could be impacted by cross-sectional
correlation. To control for this correlation, we remove cross-sectional
averages from the data as first suggested by Levin et al. (2002).

The IPS test estimates each state-specific ADF regression and
averages the resulting t statistics, with the null hypothesis being
that all panels contain a unit root (i.e. all panels are non-stationary).
Table 3 presents our IPS test results and reveals that for education,
real GDP per capita, total energy consumption, and real GDP per fos-
sil fuel consumption the null hypothesis of non-stationarity cannot
be rejected. The non-stationarity of some of our variables re-enforces
the choice to implement non-overlapping time intervals, which is
widely accepted in the growth literature (Islam, 1995; Caselli et al.,
1996; Bond et al., 2001.) Islam (1995) also argues that yearly time
spans are too short a period to study growth convergence.

Using five year averaged data between 1970 and 2013, we divide
our sample into nine (time) periods for each state: 1970, 1975, 1980,
1985, 1990, 1995, 2000, 2005, and 2010. This implies that when
t = 1975, then t − 1 = 1970. Likewise, the endogenous regressors
(for example, savings rate of physical capital, population growth, and
energy resource consumption in the per capital GDP equation) are
averaged over the period 1970 to 1975 (and each of the subsequent
five-year intervals). Because the random error terms, vit, are now in
five-year intervals, fluctuations in business cycles should have less
influence on the error terms (Islam, 1995). Furthermore, dividing the
observations into five-year intervals should also mitigate any serial
correlation within the error term.

Table 3
Im–Pesaran–Shin panel unit root tests for annual state-level observations, 1970–2013.

(1) (2)

t-bar statistic p-Value

Total energy consumption (Billion BTU) 2.357 0.991
Fossil fuel energy consumption (Billion BTU) −3.231 0.001∗∗∗

Investment (%) −20.639 0.000∗∗∗

Population (%) −8.307 0.000∗∗∗

Education (%) 1.418 0.929
Real GDP per capita −1.105 0.135
Log(real GDP per capita) −2.384 0.009∗∗∗

Real GDP per total energy consumption −3.360∗ 0.000∗∗∗

Real GDP per fossil fuel consumption −0.260∗∗ 0.398

Notes: The null hypothesis of the IPS test is that the time series variable contains a unit
root. Thus, a rejection of the null implies that the series is stationary or weakly depen-
dent. Variables are demeaned. For all variables, both the trend and the constant are
included. These tests were implemented by using the “xtunitroot” command within
Stata 12.0.

∗ Denotes 10% significance level.
∗∗ Denotes 5% significance level.

∗∗∗ Denotes 1% significance level.

4.2. Empirical model and estimation method

Our augmented neoclassical growth model predicts that increas-
ing the level of energy increases growth in the transition to the new
steady-state, and that conditional convergence in energy intensity
across U.S. states emerges over time. To test the strong and weak
version of the decoupling hypothesis, we use a unified empirical
framework which relies on non-overlapping five-year averaged data
and takes on the following dynamic panel regression specification:

Zit = cZit−5 + b′Xi(t−5,t) + li + gt + eit. (4.2)

Zit is equal to the logarithm of per capita GDP or energy inten-
sity (depending on the variable of interest) and the lagged dependent
variable, Zit−5, is included to capture the convergence in the corre-
sponding variable. The set of control variables in the vector Xi(t−5,t)
are averages between the period t − 5 and t and include the invest-
ment rate and population growth. Our specifications also control
for unobserved, time-invariant state effects, l i, and common time-
effects, gt that capture global shocks.

As the right-hand side of both equations includes a lagged
dependent variable, careful consideration in choosing the estimation
technique is necessary. Specifically, conventional longitudinal data
approaches such as the panel ordinary least squares (OLS) and the
within estimator (fixed effect model) can yield biased estimates if
the time dimension of the panel data set is small or if there is a cor-
relation between the country fixed effects and the lagged dependent
variable. Even first difference OLS would yield inconsistent estimates
of the differenced lagged dependent variable as it is correlated with
the differenced error term (Cameron and Trivedi, 2005). Consistency
may also be undermined by endogeneity caused by measurement
errors or reverse causality.

In light of these issues, various consistent, dynamic panel data
models have been developed, including the bias-corrected least
squares dummy variable model (Judson and Owen, 1999) and first
differences OLS with instrumental variables (Anderson and Hsiao,
1981). Anderson and Hsiao’s (1981) method, in particular, provides
consistent estimates as it proposes to use a lagged observation of
the explanatory variable as an instrument, since the lagged observa-
tion is not correlated with the current error term (provided there is
no serial correlation within the underlying data). Arellano and Bond
(1991) build upon this by proposing additional lags as instruments,
as it should lead to more efficient estimates of the explanatory vari-
ables (Cameron and Trivedi, 2005). In particular, the difference-GMM
estimator of Arellano and Bond (1991) uses only the first-difference
equations, instrumented by the lagged levels of the explanatory
variables. A limitation of the approach is that if the explanatory
variables are persistent, then their lagged levels are shown to be
weak instruments (Arellano and Bover, 1995; Blundell and Bond,
1998).

To avoid this drawback of the difference-GMM estimator, we
estimate dynamic Eq. (4.2) using a two-step system GMM esti-
mator proposed by Arellano and Bover (1995) and Blundell and
Bond (1998) with the Windmeijer (2005) finite-sample correction.
The system-GMM estimator combines the first-difference equations,
whose regressors are instrumented by their lagged levels, with
equations in levels, whose regressors are instrumented by their first-
differences. The two-step GMM estimator developed by Ahn and
Schmidt (1995, 1999) and Blundell and Bond (1998) is consistent and
asymptotically efficient in the presence of heteroskedastic errors.
Because the two-step system GMM estimator may produce down-
ward biased results when using finite samples, Windmeijer (2005)
proposes a finite sample correction for the variance–covariance
matrix.

Please cite this article as: J. Wesley Burnett, J. Madariaga, The convergence of U.S. state-level energy intensity, Energy Economics (2016),
http://dx.doi.org/10.1016/j.eneco.2016.03.029

http://dx.doi.org/10.1016/j.eneco.2016.03.029


J. Wesley Burnett, J. Madariaga / Energy Economics xxx (2016) xxx–xxx 9

ARTICLE IN PRESS

For panel data sets with short-time dimensions, the two-step
system estimator addresses the potential biases that arise from
the correlation between the state-level fixed effects, l i, and the
lagged dependent variable, Zit−5, as well as the endogeneity of
other explanatory variables. We treat all potential determinants
as endogenous and use lags of the variables as GMM-type instru-
ments. (We also use the collapse option in Stata, which creates
one instrument for the endogenous variable and lag distance, rather
than one for each time period, variable, and lag distance. This
option minimizes the potential bias that might arise as the num-
ber of instruments increases, and as the instruments overfit the
endogenous regressors. See Roodman (2005) for more details).
The consistency of the system GMM estimator depends on two
hypotheses. First, the instrumental variables are not correlated
with the error terms (this is verified using the Hansen J test
of overidentifying restrictions, where the null hypothesis is that
the error term is uncorrelated with the instruments). Second, the
residuals are not second-order serially correlated (this is verified
using the Arellano–Bond tests, where the null is that there is no
autocorrelation of order 2 in the residuals). We report the Hansen
J tests of over-identification to confirm our instrument’s valid-
ity, as well as the p-values of the tests for second order serial
correlation.

5. Estimation results

5.1. Effects on per capita GDP (income)

The estimates for the convergence in state-level, per capita
income and energy intensity are listed in Tables 4 and 5, respectively.
To capture the impact of energy intensity on per-capita income lev-
els, we incorporate a measure of total renewable and nonrenewable
energy consumption as well as a measure of nonrenewable energy
in the form of fossil fuel consumption. Table 4 highlights that energy
intensity, as measured by total energy consumption (in column 1 and
column 3), is an income-enhancing factor in a state’s growth process

through time. Specifically, the parameter estimates are positive and
significant at 5% , implying that a 10% increase in the total energy
intensity results in an increase in state-level, per capita income
between 0.21 to 0.24%. This effect is more than three and a half times
the impact of fossil fuel consumption alone, confirming the intuition
that total renewable and nonrenewable energy consumption should
matter more for per capita income. Based on recent observed trends
in economic growth and energy consumption, our finding may par-
tially reflect a weak decoupling of primary energy consumption and
economic growth in the U.S. According to Bloomberg News Energy
Finance (2016), over the period 2007–2015 the U.S. economy grew
by 10% , whereas primary energy consumption (fossil fuel consump-
tion) fell by 2.4% and electricity consumption remained flat during
that same period.

The estimates on the lagged real GDP per capita in the first row
of Table 4 robustly support the existence of conditional convergence,
with the coefficients ranging from 0.751 to 0.857. These estimates
yield an implied speed of convergence around 3-5.7% per year and
a half-life ranging from 12 to 22.4 years. The estimated rate of con-
vergence contrasts with the findings of Markandya et al. (2006),
who estimate a 1.7% rate of per capita income-convergence for a
panel of Eastern European countries (transitional economies), with
an implied half-life of approximately 41 years. At a convergence rate
of 4%, the half-life implies that if there is some gap between the initial
observed level of per capita income and its steady state level, then
half of the initial gap will be eliminated in approximately 17 years.
The consensus of economic rates of convergence tend toward 2%
(Mankiw et al., 1992; Barro and Sala-i-Martin, 2004) so our estimates
are slightly larger than what is typically found within the literature;
however, dynamic panel data models generally yield slightly higher
estimated rates of convergence (Islam, 1995; Caselli et al., 1996).

Consistent with the predictions of the theoretical model, the
investment share of capital is positive and statistically significant at
the 1% level in all specifications. Quantitatively, the parameter esti-
mates suggest that a 10% increase in the investment share results in
an increase in state-level, per capita income between 0.68 to 0.8%.

Table 4
Determinants of per capita income for the United States.

(1) (2) (3) (4)

Lagged log of initial GDP per capita 0.778∗∗∗ 0.857∗∗∗ 0.751∗∗∗ 0.807∗∗∗

(0.0590) (0.0632) (0.0642) (0.0690)
Log investment share 0.0746∗∗∗ 0.0679∗∗∗ 0.0808∗∗∗ 0.0819∗∗∗

(0.0163) (0.0160) (0.0177) (0.0197)
Log population 0.0399 0.0849 0.0183 0.0486

(0.0785) (0.0826) (0.0827) (0.0879)
West −0.0584∗∗ −0.0576∗∗∗ −0.0501* −0.0500*

(0.0253) (0.0213) (0.0276) (0.0257)
Midwest −0.0459 −0.0203 −0.0262 0.000727

(0.0367) (0.0241) (0.0310) (0.0264)
South −0.0911∗∗ −0.0594* −0.0627 −0.0280

(0.0355) (0.0315) (0.0392) (0.0393)
Log total energy consumption 0.0244∗∗ 0.0206∗∗

(0.0107) (0.00882)
Log total fossil fuel energy consumption 0.00695 0.00249

(0.0108) (0.0103)
Log education 0.110 0.143*

(0.0784) (0.0877)
Implied rate of convergence 0.050 0.031 0.057 0.043
Implied half-life 13.808 22.432 12.097 16.157
Observations 459 459 459 459
US states and Washington DC 51 51 51 51
Hansen p-value 0.217 0.180 0.232 0.179
Arellano–Bond p-value for AR(2) 0.674 0.346 0.801 0.516

Notes: The dependent variable is the log of initial GDP per capita. The estimates and standard errors are obtained from the two-step system GMM procedure with the Windmeijer
(2005) small-sample correction. A set of year effects and a constant are included in all specifications. Standard errors are in parentheses. The p-values for the Hansen over-
identification test and the Arellano–Bond second order serial correlation tests are reported.

∗ Denoted significance at the 10% level.
∗∗ Denoted significance at the 5% level.

∗∗∗ Denoted significance at the 1% level.
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Table 5
Determinants of energy intensity for the United States.

(1) (2)

Energy intensity: Energy intensity:

Total energy Fossil fuels

Lagged log of energy intensity 0.933∗∗∗ 0.962∗∗∗

(0.0562) (0.0401)
West −0.0738∗∗ −0.0809∗∗

(0.0330) (0.0331)
Midwest −0.0350 −0.0392*

(0.0221) (0.0219)
South −0.0866* −0.0748*

(0.0482) (0.0417)
Log investment Share 0.0411* 0.0625∗∗

(0.0243) (0.0311)
Log population 0.149 0.0735

(0.107) (0.158)
Log degree days −0.0657 −0.0638

(0.0533) (0.0419)
Implied rate of convergence 0.014 0.008
Implied half-life 49.511 86.643
Observations 459 459
US States plus Washington DC 51 51
Hansen p-value 0.178 0.147
Arellano–Bond p-value for AR(2) 0.269 0.406

Notes: The energy variable in column 1 is total energy consumption using both
renewable and nonrenewable energy. The energy variable in column 2 is energy con-
sumption using fossil fuels only. The estimates and standard errors are obtained from
the two-step system GMM procedure with the Windmeijer (2005) small-sample cor-
rection. A set of year effect are included in all specifications and a constant are included
in all specifications. Standard errors are in parentheses. The p-values for the Hansen
over-identification test and the Arellano–Bond second order serial correlation tests
are reported.

∗ Denoted significance at the 10% level.
∗∗ Denoted significance at the 5% level.

∗∗∗ Denoted significance at the 1% level.

The estimates on population growth are positive, although not statis-
tically significant. We also include regional dummy variables because
it is possible that resources or regional policy may influence income
disparities by the changing the competitive and comparative advan-
tages across U.S. states. When factors of production are mobile, one
location can draw production away from other locations and influ-
ence regional economic performance and the convergence process
(Lall and Yilmaz, 2001). The negative coefficients for the West, Mid-
west, and South are not surprising, since these estimates are being
compared to the high per-capita income level of the states from the
Northeast (the base group excluded from the regression).

Growth theory stresses the importance of human capital to the
income process so its exclusion from the baseline specifications may
bias the coefficients on investment, population growth, energy inten-
sity, and the regional-specific effects. We carry out robustness checks
in columns (3) and (4) by exploring the effect of adding educational
attainment as a proxy for human capital. In terms of magnitude,
the presence of human-capital accumulation increases the impact of
physical capital accumulation on income, while lowering the impact
of population growth, energy intensity, lagged real GDP per capita,
and the regional dummy variables on income. The results for invest-
ment, lagged real GDP per capita, and energy intensity with respect
to renewable and nonrenewable energy are robust to controlling for
human capital and remain statistically significant, and the popula-
tion growth and energy intensity with respect to fossil fuels remains
statistically insignificant. Once education is accounted for, only the
West regional variable stays statistically significant. In both specifi-
cations, education is positive indicating that a ten percent increase in
education results in an increase in per capita income between 1.1 to
1.43%, however human capital is only statistically significant at the
margin with p-values equaling 0.165 and 0.10.

5.2. The convergence of energy intensity

Having established the link between total energy intensity and
the level of per capita income, we next provide evidence on the
convergence of energy intensity across U.S. states using measures
of total renewable and nonrenewable energy and fossil fuel energy.
To that end, we specify an empirical model for energy convergence
that closely follows Eq. (2.15). Table 5 presents the results. As in the
previous table, column one measures energy usage as total energy
consumption, whereas column two measures usages as fossil fuel
consumption.

The coefficients for initial energy intensity in both columns con-
firm the prediction of the theoretical model as highlighted by the
statistically significant rates of convergence. The implied rates of
convergence from both regressions are approximately equal to1%.
The estimated levels of convergence in energy intensity are simi-
lar to the rates of convergence recently found within the literature
(Csereklyei and Stern, 2015; Mulder and de Groot, 2012b; Liddle,
2010; Markandya et al., 2006). That is, these authors found the fol-
lowing estimates for the rates of convergence in energy intensity:
Markandya et al. (2006) find a rate of 1.02% for group of Eastern Euro-
pean countries between the period 1992–2002; Liddle (2010) finds
a rate of 1.06% for 111 international countries for the period 1990–
2006; Mulder and de Groot (2012b) find a rate of 1.8% for 18 OECD
countries for the period 1970–2005; and, Csereklyei and Stern (2015)
find a range of estimated rates between 1 and 2% for a sample of 93
international countries for the period 1971–2010.

Based on the implied rate of convergence, the estimated half-life
is approximately equal to 50 years for the total energy consumption
specification (column 1) and is approximately equal to 87 years for
the fossil fuel consumption (column 2) specifications, respectively. If
one takes the average of both the total energy consumption (column
1) and fossil fuel consumption (column 2) specifications, the esti-
mated half-life is approximately equal to 68.5 years. Intuitively, this
estimated half-life implies that a shock to state-level energy intensity
would take approximately 68.5 years to dissipate by one half. This
estimated half-life of convergence may seem exceedingly long to the
casual reader, especially for those persons who are accustomed to
the more traditional economic growth literature, where an estimated
convergence rate of 2% would yield an approximate half-life of 35
years. However, when compared to the other estimates of energy-
intense convergence within the literature, our estimated half-life is
more-or-less in line with the other studies. Particularly, based on the
estimated rates of convergence identified above, the implied half-
life for each study are as follows: Markandya et al. (2006)— 68 years
(1.02% rate of convergence); Liddle (2010)— 65 years (1.06% rate of
convergence); Mulder and de Groot (2012b)— 39 years (1.8% rate of
convergence); and, Csereklyei and Stern (2015)— 46 years (based on
implied 1.5% rate of convergence).

Our interpretation of the long half-life of energy intensity is
that the structural change, to less energy-intense economies, occur-
ring across U.S. states is a slow process through time. As the U.S.
continues to transition to a more service-based economy (com-
bined with energy efficient technological innovations), its energy
needs will likely continue to decrease slowly over the next com-
ing decades (Mulder and de Groot, 2012a). As an energy-intense
industrial economy for the better part of two centuries, it seems
intuitive then that it would take the U.S. economy a relatively long
time to decrease its total energy consumption (which is reflected
in our estimated one percent rate of convergence for energy inten-
sity). Hence, if a shock occurs to U.S. energy intensity, it perhaps
reasonable that it would take 68.5 years for the shock to dissipate in
half.

In regards to our control variables, the investment share is pos-
itive (which is consistent with theory) and statistically significant.
For the total energy specification in column 1, the coefficient on the
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investment share implies that a 10% increase in capital accumulation
would lead to an approximate 0.4% increase in energy intensity. Sim-
ilar to the previous tables, the population variable has a positive but
statistically insignificant effect on energy intensity.

The regional indicator variables are used as a means of absorbing
some of the unexplained variation across state energy intensity lev-
els over the entire period of observation. The regional indicator for
“Northeast” was treated as the base, leaving the regional indicators
for the “West,” “Midwest,” and “South.” Among these indicators, it is
interesting to note that the regressions yielded negative coefficient
estimates for the rest of the regions. These results do not necessarily
indicate that these regions are converging at an absolute lower rate,
but rather are converging at a lower rate relative to the Northeast
(the base region). These findings are arguably due to the Northeast’s
lack of fossil fuel resources (outside of Pennsylvania) compared to
the other census regions. For example, between 2012 and 2013 the
following regions consumed more coal relative the Northeast’s con-
sumption over the same period: the Midwest consumed 600% more
coal; the South consumed nearly 400% more coal; and, the West con-
sumed 200% more coal (Energy Information Administration, 2015a).
The large difference in coal consumption, between the West and
Northeast regions, likely explains the relative large marginal effect
and negative estimated coefficient on the West region in Table 5.

The estimated coefficient on the degree day variable is negative
but statistically insignificant. The negative estimated coefficient is
consistent with theory because an increase in degree days would
imply an increase in energy demand (heating or cooling services);
therefore, an increase in demand would imply an increase in energy
intensity. However, our estimated rate of convergence implies that
energy intensity is falling over the observation period, thus degree
days are estimated to be inversely related (negative) with our
observed trends in energy intensity.

6. Discussion and policy implications

Consistent with recent empirical observations of energy intensity
in developed countries, we find strong evidence of convergence in
energy intensity among a set of advanced economies (U.S. states).
Our results, motivated in part by Csereklyei and Stern (2015), test a
strong and weak version of the energy decoupling hypothesis. The
strong hypothesis, as defined by Csereklyei and Stern (2015), predicts
that economic growth has less of an effect on energy use as income
increases over time. We did not test the effect of economic growth on
energy (per se), but rather we investigated the effect of energy use on
income growth. Based on our augmented definition of strong decou-
pling, we reject the hypothesis. That is, we find sufficient evidence
to imply that energy plays a positive and statistically significant role
in economic growth or convergence, which does not imply a strong
decoupling between energy use and per capita economic growth in
the U.S. This result is evidenced by the statistical significance of the
energy variables in the economic growth models. In fact, based on
the face value of the estimated coefficient on total energy consump-
tion, a 1% increase in total energy consumption only increases per
capita income by 0.02% , which is a positive but relatively small effect.

At the same time, we found strong evidence of convergence
in energy intensity across U.S. states. Table 5 reports the parame-
ter estimates for the energy intensity specification, where energy
measures include total energy consumption (both renewable and
nonrenewable) and total fossil fuel consumption (nonrenewable).
The lagged energy intensity coefficient in both column (1) and col-
umn (2) is positive and statistically significant at the 1% level. The
signs of the lagged dependent variable robustly suggest the existence
of conditional convergence and confirm our models predictions that
energy intensity slows down as energy grows towards its steady
state. This last finding is our corollary to Csereklyei and Stern’s (2015)

definition of weak decoupling, which they define as a decline in
energy use in wealthier countries over time. Similar to the findings of
Csereklyei and Stern (2015), we fail to reject the hypothesis of weak
decoupling as well.

Our findings are similar to the trends discussed by Rühl et al.
(2012), who observed that global energy intensities seem to be
converging to ever lower levels. They posited four drivers for the
convergence in intensities: technology, resource endowments, eco-
nomic structure, and fuel mix. In the words of the authors: (1)
technological development improves the conversion of fuels and end
use efficiency; (2) domestic energy resource availability lowers the
price of energy and effects its usage; (3) the transition to a service-
based economic structure lowers per capita energy consumption;
and, (4) a diversified fuel mix tends to drive down energy intensity
levels through time (Rühl et al., 2012). In the context of our study,
we arguably controlled for the first three drivers and implicitly con-
trolled for the last driver. That is, our empirical model contained an
explicit variable for technological development, which we demon-
strated was embedded in the very definition of energy intensity
itself. The states’ resource endowments were arguably captured by
the explanatory variable pertaining to the level of energy resources,
which we proxied with state-level energy consumption.

The third driver is relatively difficult to model in our neoclassi-
cal growth framework, but is arguably captured by the accumula-
tion of capital process that we developed in the theoretical model.
According to Rühl et al. (2012), the observed trends in energy inten-
sity reflect well-known, stylized patterns of economic development.
That is, as the economic structure transitions from energy-intensive
industrial activities to less energy-intensive service activities, then
energy use has a tendency to decline in lockstep with this transition
process. Our theoretical model was able to capture this transition
process by showing that the steady state level of economic growth
is positively related to the share of capital in an economy’s per
capita income. Intuitively, an economy that engages in more indus-
trial activities should require more capital accumulation, and the
converse holds true as well — ceteris paribus, less industrial activ-
ity implies less capital accumulation (as reflected in the capital share
parameter). Our empirical model, in turn, confirmed this hypothe-
sis as the capital share parameter was found to be both positive and
highly statistically significant in the convergence of energy intensity.
Hence, as U.S. state economies transitioned from less industrial activ-
ities during our period of observation, we would expect the capital
share parameter to capture this transition process.

For the sake of tractability, the fuel mix was not modeled explic-
itly in our theoretical growth framework. Arguably, the U.S. already
possessed a relatively diverse fuel mix at the beginning of our period
of observation, due to the existing rich energy endowment. The two
oil crises in the 1970s impelled states to diversify their fuel mix
further, which included introducing renewables into the mix. Our
theoretical model did not account for this change in the fuel mix, but
rather implicitly assumed that energy resources are homogenous by
measuring all consumption in terms of the total heat content (BTUs)
of the various sources. Nevertheless, we checked the robustness of
our convergence analysis against different definitions or measures of
energy resource consumption (total energy consumption versus fos-
sil fuel consumption), in which we found remarkably similar results
despite the defined differences.

Based on our estimated results, and our failure to reject the weak
decoupling hypothesis, certain policy implications emerge for energy
consumption and economic growth in the U.S. The first implication
is based on our estimate of the implied rate of convergence in energy
intensity. Specifically, we estimate the implied rate of convergence to
be 1% (per year) for total energy consumption and fossil fuel energy
consumption, a finding in line with Csereklyei and Stern (2015),
Liddle (2010), and Csereklyei et al. (2016). The estimate, for total
energy consumption, yields a half-life estimate approximately equal
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to 50 years. The half-life implies that if there is some gap between
the initial observed level of energy consumption and its steady state
level, then half of the initial gap will be eliminated in approximately
50 years.

These findings potentially could affect state-level renewable
energy policies or portfolio standards, where states seek to diversify
their energy resource portfolio, among other policy goals. Because
our estimated rates of convergence have policy implications for long-
run energy intensity, not necessarily short-run intensity, our findings
do not suggest that states should pare back or forgo renewable port-
folio standards (RPSs). On the contrary, such policy measures help an
economy to deal with short-term adverse shocks to the energy sec-
tor. Furthermore, a RPS could arguably help a state economy to drive
down its energy intensity trajectory into the future, which implies
that a state would be even less vulnerable to future adverse energy
shocks.

Lastly, and perhaps most importantly, our rejection of the strong
decoupling hypothesis and failure to reject the weak decoupling
hypothesis imply that state-level economic growth need not nec-
essarily be constrained by resource availability. In other words, our
findings imply that state-level economic growth and convergence
are not highly dependent on energy resource use. Whereas, failure to
reject the weak hypothesis suggests that energy use is declining as
the U.S. economy continues to grow through time. This does not sug-
gest that energy resource availability or prices will have no effect on
the economy in the short run — in fact, short-run shocks to resources,
such as a shortage in the crude oil supply, can have relatively large
effects on a state economy. However, our estimated rates of conver-
gence imply that any short-run shocks to energy usage should not
necessarily create any long-lasting detrimental effects on the state’s
future economic growth trajectory.

Future research could benefit by expanding upon the current
analysis. Our estimates were limited to a set of advanced economies,
from which we were able to demonstrate well-founded observations
of energy intensity and energy decoupling within a developed nation,
but it is difficult to say if the same results would hold up among a
set of developing economies. In other words, it would be interesting
to examine the existence and rate of convergence in energy inten-
sity among developing economies that have not fully transitioned to
a service-based economic structure.

Appendix A. Textbook Solow model

Solow’s (1956) model takes the rates of saving, population
growth, and labor-augmenting technological progress as exogenous.
The initial model contains two factors of production (inputs)—capital
and labor. If one specifies a Cobb—Douglas production function
(Mankiw et al., 1992), the output is determine at time t as follows

Y(t) = K(t)a • (A(t) • L(t))1−a 0 < a < 1, (A.1)

where Y denotes output, K is physical capital, L is labor, and A is a
labor-augmenting level of technology (Islam, 1995). The above spec-
ification assumes constant returns to scale in capital and labor; i.e.,
the output or production share elasticities (a and 1 − a) sum to
one. This implies that doubling both inputs will result in a doubling
of output. Since population and technology are assumed to grow at
exogenous rates n and g, they are defined as

˙L(t)
L(t)

= n → L(t) = L(0) • exp{nt} (A.2)

˙A(t)
A(t)

= g → A(t) = A(0) • exp{gt}. (A.3)

The notation above with the “dot” above the variable, indicates
the derivative of the variable with respect to time. For example,
Ẋ is equivalent to dX

dt . The two equations above imply that effec-
tive labor, defined as A(t) • L(t), grows (or more technically declines)
exogenously at the rate of n + g.

For ease of interpretation, we can redefine the model’s variables
in intensive form as follows:

k(t) ≡ K(t)
A(t) • L(t)

y(t) ≡ Y(t)
A(t) • L(t)

,

where k(t) denotes the stock of capital per effective unit of labor,
A(t) • L(t), and y(t) denotes the level of output per effective unit of
labor. Given the Cobb–Douglas specification of production in Eq.
(A.1), the function can be rewritten in intensive form as y(t) = k(t)a .

Next, Solow (1956) defines the equation of motion of capital
formulation as follows:

˙k(t) = I(t) − d • k(t). (A.4)

Eq. (A.4) implies that capital is growing in current investment, I(t),
but decreasing over time due to the depreciation, d, of the current
stock of capital. Solow assumes that a constant fraction of income,
s, is dedicated toward investment, which is defined as I(t) = s • Y(t).
Where the parameter s denotes the exogenously determined saving
rate. Substituting this identity into the above equation, and rewriting
it in intensive form, yields the following:

˙k(t) = sy − d • k(t). (A.5)

Given that Eq. (A.4) is defined as capital per effective unit of labor,
which is also growing at the rate of n + g, the equation of motion
implies that the current level of capital is also growing at those
exogenous rates, or:

˙k(t) = s • ka − (n + g + d) • k(t). (A.6)

In the above equation, we have also substituted the production func-
tion, in intensive form, for y = f(x) = ka . Eq. (A.6) implies that
capital, k, converges to a unique steady-state value, k∗, over time,
which is defined as (the steady-state is locally and globally stable
provided that a < 1):

k∗ =
[

s
(n + g + d)

]1/1−a

. (A.7)

This equation implies that the steady-state level of capital is pos-
itively related to the savings rate and negatively related to the
population growth rate.

Substituting the steady-state level of capital into the production
function, and converting to natural logs, implies the following about
the steady-state income per capita level:

ln
[

Y(t)
L(t)

]
= ln A(0) + g • t +

(
a

1 − a

)
ln(s) −

(
a

1 − a

)
ln(n + g + d).

(A.8)

Mankiw et al. (1992) assume that the initial level of technology,
lnA(0), which is an arbitrary constant, is defined by lnA(0) = b0 + e;
where b0 denotes a constant to be estimated via a regression analy-
sis, and e is a standard noise term. They then substitute this identity
into Eq. (A.8), and redefine the parameters on each of the right-hand
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side variables (i.e., a/(1 − a) = bi)), to empirically test the steady-
state income per capita level predicted by the model. Exploiting a
cross-section of international countries, the authors find that the the-
oretical model performs exceeding well in explaining income per
capita within the data.

Appendix B. Proof for the rate of convergence with the
three-factor Solow growth model

From Eqs. (2.2)–(2.3) above we have:

˙k(t) = sk • k(t)a • e(t)b − (n + g + d) • k(t),
˙e(t) = se • k(t)a • e(t)b − (n + g + d) • e(t).

In order to derive the rate of convergence we log-linearize around
the steady state of both inputs. (This is basically a first-order Taylor
series expansion around the steady state, but our notation will dif-
fer slightly from textbook definitions of a Taylor series expansion). If
we totally differentiate the first equation of motion above then we
derive (where we have omitted the time factor for the purposes of
exposition):

k̇ − k̇∗ =k̇

≈
(

sk • a • (k∗)a−1 • (e∗)b
)

dk +
(

sk • b • (k∗)a • (e∗)b−1
)

de

− (n + g + d)dk

≈
(
a •

(k∗)a−1 • (e∗)b

k(t)a • e(t)b
• sk • k(t)a • e(t)b

)
dk

+

(
b •

(k∗)a • (e∗)b−1

k(t)a • e(t)b
• sk • k(t)a • e(t)b

)
de − (n + g + d)dk

≈
(
a • (g + n + d)

e∗

k∗

)
dk + (b • (g + n + d)) de − (n + g + d)dk

≈ ((a − 1) • (g + n + d))
dk
k∗ + (b • (g + n + d))

de
e∗

≈ ((a − 1) • (g + n + d)) • (ln(k) − ln(k∗))

+ (b • (g + n + d)) • (ln(e) − ln(e∗)). (B.1)

By symmetry, the log-linearization of energy capital around its
steady state is defined as:

ė − ė∗ =ė

≈ (a • (g + n + d)) • (ln(k) − ln(k∗))

+ ((b − 1) • (g + n + d)) • (ln(e) − ln(e∗)). (B.2)

The production function, in intensive form, is defined as y = f(k, e) =
ka • eb, and its growth rate then is defined as

ẏ
y

= a •
k̇
k

+ b •
ė
e
. (B.3)

Similarly, we can log-linearize around the steady state of output by
totally differentiating the production function as follows:

y − y∗

y∗ = a •

(
k − k∗

k∗

)
+ b •

(
e − e∗

e∗

)
(ln(y) − ln(y∗) ≈ a • (ln(k) − ln(k∗)) + b • (ln(e) − ln(e∗)). (B.4)

By substituting Eqs. (B.1) and (B.2) into Eq. (B.3), and using the
identity defined in Eq. (B.4), the rate of convergence is defined as

d ln y
dt

= (a + b − 1) • (n + g + d) • (ln(y) − ln(y∗)). (B.5)

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.eneco.2016.03.029.
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